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Abstract

 Cytochrome P450 1A (CYP450 1A) induction is used widely as a biomarker when assessing exposure to contaminants 
in environmental systems including pesticides. The effect of chlorpyrifos and carbaryl on CYP450 1A induction was assessed 
both by measurements of the induction of the EROD activity and the CYP450 1A gene expression in hybrid catfish (Clarius 
gariepinus x Clarius macrocepharus). Fish were treated with several concentrations of chlorpyrifos (0.43, 4.3 or 43 µM), 
or carbaryl (1.19, 11.9 or 119 µM) for 24 or 48 h. The livers were then assayed for changes. Chlorpyrifos and carbaryl at all 
concentrations slightly increased the levels of EROD activity after 24 and 48 h and increased gene expression of CYP450  
1A mRNA in dose-dependently. Exposure to chlorpyrifos and carbaryl at high concentrations resulted in significant 
elevation of CYP450 1A gene expression in comparison to control fish (P<0.05) at both time intervals. These results showed 
that the responses of CYP450 1A were more pronounced in gene expression analysis than in EROD assay. This suggests 
that the induction of CYP450 1A at the gene level was more sensitive than at the protein level. The induction of CYP450 
1A following chlorpyrifos and carbaryl exposure indicates the possible use of CYP450 1A as a biomarker for detecting 
effects of these pesticides in hybrid catfish.
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Abstract

The aim of the present study was to standardize and to assess the predictive value of the cytogenetic analysis
by Micronucleus (MN) test in fish erythrocytes as a biomarker for marine environmental contamination. Micronucleus
frequency baseline in erythrocytes was evaluated in and genotoxic potential of a common chemical was determined
in fish experimentally exposed in aquarium under controlled conditions. Fish (Therapon jaruba) were exposed for 96
hrs to a single heavy metal (mercuric chloride). Chromosomal damage was determined as micronuclei frequency in
fish erythrocytes. Significant increase in MN frequency was observed in erythrocytes of fish exposed to mercuric
chloride. Concentration of 0.25 ppm induced the highest MN frequency (2.95 micronucleated cells/1000 cells compared
to 1 MNcell/1000 cells in control animals). The study revealed that micronucleus test, as an index of cumulative
exposure, appears to be a sensitive model to evaluate genotoxic compounds in fish under controlled conditions.
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect
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1. Introduction

 Chlorpyrifos (O,O- diethyl O-3,5,6-trichloro-2-
pyridyl phosphorothionate) and carbaryl (1-naphthol 
N-methylcarbamate) insecticides are commonly used 
in agricultural areas for pest control. Unfortunately, 
many of these chemicals have had unintended effects 
on aquatic organisms by aerial overspray or run-off 
(Somnuek et al., 2009).
 Exposure to chemicals can be revealed with 
biomarkers. CYP450 1A induction is one of the best 
studied parameters as a biomarker for measuring the 
response of aquatic organisms when assessing exposure 
to contaminants in environmental systems (Flammarion 
et al., 1998; Cheevaporn and Beamish, 2007). The 
cytochromes P450 superfamily is one of the largest and 
functionally most diverse protein families. The CYP450 
enzyme system has been detected in all organisms 
examined, from bacteria to mammals. These enzymes 
are associated with an extremely important metabolic 
system because of their involvement in regulating the 
titers of endogenous compounds such as hormones, fatty 
acids, and steroids. Additionally, this enzyme system 

plays a central role in the metabolism of xenobiot-
ics such as drugs, polycyclic aromatic hydrocarbons 
(PAHs), polychlorinated biphenyls (PCBs), pesticides 
(Stegeman and Hahn, 1994; Scott, 1999). 
 Hybrid catfish (Clarias macrocephalus X Clarias 
gariepinus) are mostly nocturnal scavengers which 
like taking oxygen on surface water. They live near the 
bottom in shallow waters which may be contaminated 
by insecticides; therefore they may be exposed to toxins 
at all levels of water. As a consequence, toxins can 
transfer to humans by the food chain. In fish, the liver 
plays an important role in several vital functions of basic 
metabolism and it is also a major organ of accumulation, 
biotransformation and excretion of contaminants, 
including degradation and bioactivation of insecticides. 
The ability of fish to biotransform xenobiotics can 
help predict their susceptibility to contaminants in the 
environment (Nabb et al., 2006).
 The induction of 7-ethoxyresorufin O-deethylase 
(EROD) activity is a commonly used biomarker for 
exposure to CYP450 1A inducers. However, the 
gene expression of CYP450 1A is another interesting 
biomarker which is dose-responsive to environmental 



17

concentrations of different xenobiotics (Fent, 2001). 
The most accurate method for transcript evaluation is 
reverse transcription-real time PCR (Dixon et al., 2002; 
Funkenstein et al., 2004). Therefore, the objective of 
this study was to investigate the effect of two broadly 
used insecticides on both induction of EROD activity  
and the molecular expression in hybrid catfish. 
Specifically, we investigated whether this gene 
expression could be used as a monitoring tool for 
detecting the effects of these insecticides in hybrid 
catfish.

2. Materials and Methods

2.1. Animal preparation

 Juvenile hybrid catfish weighing 100 to 150 g 
(approximately 3 months old) were purchased from a 
local supplier and transported live to the laboratory in 
aerated tanks. They were acclimatized in glass aquaria 
containing 200 L with continually aerated water under 
natural photoperiod. During the acclimatization period, 
the catfish were fed daily with fish food pellets (Safe 
feed 7711, Charoen Pokphand Foods PCL, Thailand) 
weighing about 1% of the body weight, and were then 
fasting for 24 hours before the experiment. The ambi-
ent water temperature was 23±2°C, pH 7.4±0.5 and 
dissolved oxygen 5±1.5 mg/L. Fish were held for at 
least 15 days before exposure to the insecticides.

2.2. Insecticide exposure

 Chlorpyrifos (95.0% purity) and carbaryl (85.0% 
purity) were purchased from Gharda Chemicals 
Limited, Maharashtra, India and Hunan Haili Chemical 
Industry Co. Ltd., Hunan, China, respectively. The 
insecticides LC50 values were determined and then 
no effect concentration (NOEC) was subsequently 
used in this study. The insecticide compounds were 
diluted in 0.02% acetone in water to obtain the desired 
concentration then added to the aquaria. In a continued 
flow system, juvenile hybrid catfish were exposed to 
a range of NOEC of chlorpyrifos (0.43, 4.3 or 43 µM) 
and carbaryl (1.19, 11.9 or 119 µM) for 24 and 48 h. 
In the control tank, only 0.02% acetone was added. 
Fish were not fed on the day proceeding an initiation 
of the experiment or during the length of the exposure.  
At the end of each treatment, surviving fish were 
sacrificed; the liver was rapidly removed and excised 
for enzyme determination and CYP450 1A gene 
expression analysis. 

2.3. Enzymatic determinations

 Liver from fish was weighed and homogenized in 
5 volumes of homogenizing buffer (100 mM K2HPO4, 
1 mM EDTA, 150 mM KCl and 1 mM dithiothreitol). 
The homogenates were centrifuged at 10,000 g for 5 
minutes at 4 °C. The supernatant (S9) was used for an 
enzymatic assay performed at room temperature. The  
principle of the assay is based on the hydrolyzation 
of the substrate ethoxyresorufin to the fluorescent 
compound resorufin, a procedure carried out in a 
96-well microplate (Stagg and Mcintosh, 1998). 
Excitation and emission wavelengths for measuring 
resorufin formation were, respectively, 530 and 590 
nm. Resorufin formation was measured every 2 min for 
10 min. EROD activities were measured as pmol/min/
mg protein. Total protein analysis was conducted with 
100 µl of tissue homogenate from each fish using the 
Bio-Rad Protein Assay Kit (Bio-Rad Laboratories, Life 
Sciences Group, CA, U.S.A.). Colorimetric analysis 
was performed following the standard procedure 
outlined in the protein assay instructions. Bovine serum 
albumin (BSA) was used to obtain a standard curve from 
which relative measurements of protein concentration 
in the sample were made.

2.4. Primer design

 Initially, CYP450 1A gene was isolated from liver 
of hybrid catfish by reverse transcription-polymerase 
chain reaction (RT-PCR) using degenerate primers 
designed from conserved regions of CYP450 1A genes 
in closest species from GENBANK. PCR products from 
a pair of degenerate primers were cloned and sequenced 
for specific primer designing. The specific primers of 
the CYP450 1A gene were then synthesized and used 
in real-time PCR analysis. Housekeeping genes, 28S 
rRNA, designed in conserved region of fish and other 
organisms (Boonphakdee et al., 2008) were used to 
compare with the CYP450 1A gene. The primers used 
for this study are listed in Table 1.
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Table 1. List of primers used in this study

Name Sequence (5’- 3’)
Degenerate primer:
     CYP-L
     CYP-R
Specific primer:
     sp-CL
     sp-CR
     28Soce_L99
     28Soce_R334

TCA RYR AYG GMA AGA GYY TG
TTG GMG TTC TCR TCY AGY TT

CGA GGG TGA GAG TTC TGA GT
CAG CTT CCT GTC CTC ACA GT
CGA AGC CAG AGG AAA ATC TG
CCG GGC TTC TTA CCC ATT TA
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2.5. RNA preparation and reverse transcription-PCR 
(RT-PCR)

 Total RNA was extracted from liver tissue (~30 mg; 
n =5) from each individual fish using RNeasy Mini Kit 
(QIAGEN GmbH, Germany) (Miller and Yolken, 2003), 
according to the manufacturer’s instructions. Following 
determination of RNA concentrations by measuring the 
absorbance at 260 nm, the relative purity was evaluated  
by computing the ratio of A260 to A280 where a ratio 
of 1.8-2.0 was considered highly pure. Five hundred 
nanograms per microlitre of RNA was used to generate 
first strand cDNA using First Strand cDNA Synthesis 
kit for RT-PCR (AMV) (Roche Diagnostics, GmbH, 
Germany), according to the manufacturer’s instructions, 
which was stored at −20°C until proceeding.
 For the PCR reaction, 2 µl of cDNA from each 
synthesis were added to 7 µl of “2X PCR master 
mix” containing 10X PCR buffer, 10 mM dNTP, 25 
mM MgCl2, 5 U of Taq DNA polymerase (Fermentas, 
U.S.A.). Twenty µΜ of each pair of the degenerate 
primers was added, and the final volume was adjusted 
to 14 µl with nuclease free water. The mixtures were 
denatured at 94°C for 3 min. Thirty five cycles of PCR 
were carried out, with denaturation at 94°C for 1 min, 
annealing at 60°C for 45 sec, and extension at 72°C for 
1 min, followed by a final extension period of 3 min. 
PCR products were analyzed by electrophoresis on 1% 
agarose gels stained with GelStar Nucleic Acid Gel 
Stain (Cambrex Bio Science Rockland, Inc.). An expect 
size of CYP450 1A DNA band was isolated from gel 
by QIAquick Gel Extraction Kit (QIAGEN) for cloning 
and sequencing. The obtained sequences were further 
used for CYP450 1A specific primers designed. 

2.6. Gene expression analysis

 After specific primers were designed and tested, 
total RNA from liver of each treatment was isolated 

and cDNA synthesized. The cDNA was amplified by 
real-time PCR and compared with 28S rRNA gene. Fold 
inductions of CYP450 1A gene expression with the 28S 
rRNA gene were measured, 1 µl of cDNA was used in 
a total volume of 10 µl, using LightCycler FastStart 
DNA Master SYBR Green I (Roche) following the 
instructions from the supplier. Real-time PCR reaction 
was conducted for 10s at 95 ºC, 8s at 60 ºC, and 20s at 
72 ºC for 45 cycles. The CYP450 1A and 28S rRNA 
gene ratios were established for each treatment using 
LightCycler Software 4.05.

2.7. Statistical analysis

 All experiments were repeated at least five times.  
The results are reported as means ± S.E. Statistical 
differences between treatments and time of exposure 
were assessed by SPSS software package. Values of 
P<0.05 were considered to be significant.

3. Results 

3.1. Effect of chlorpyrifos and carbaryl on EROD 
activity

 Exposure of chlorpyrifos and carbaryl at all 
concentrations to hybrid catfish resulted in increased 
EROD activities, which, however, did not reach 
statistical significance. The levels of EROD activity 
showed the dose-response slightly increased after 24 
and 48 h. The highest induction of EROD activity 
was found at 43 µM and 119 µM of chlorpyrifos and 
carbaryl, respectively (Fig. 1).

3.2. Gene expression analysis

 RT-PCR products of CYP450 1A gene amplified 
from RNA using degenerate primers was detected in 
agarose gel and showed a band at the size of 553 bp 

Figure 1. EROD activity of hybrid catfish exposed to chlorpyrifos (A) and carbaryl (B) at different concentrations and time 
exposure (n=5)
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(data not shown). The fragment of PCR product was 
extracted from gel for cloning and sequencing. Specific 
primers for real-time quantitative analysis were then 
designed, and nucleotide sequences of the obtained 
CYP450 1A amplified products were 439 bp long. 
 Quantitative real-time PCR analysis of mRNA 
levels of CYP450 1A from hybrid catfish agreed 
with the trends obtained for EROD values. However, 
chlorpyrifos and carbaryl were shown to significantly 
induce CYP450 1A expression at higher concentrations. 
These insecticides were found to activate and up- 
regulate CYP450 1A at the transcriptional level which 
was demonstrated by dose-dependent increase in 
CYP450 1A mRNA levels after 24 and 48 h exposure 
(Fig. 2). The highest induction was observed in 43 µM 
of chlorpyrifos and 119 µM of carbaryl.

4. Discussion

 The detoxifying system protects aquatic species 
from endogenous and exogenous compounds. Induction 
of CYP450 1A is extensively used as an indicator of 
exposure and response to organic pollutants in teleost 
fish and other vertebrates (Stegeman and Hahn, 1994). 
The induction of CYP450 1A is known to be regulated 
by the cytosolic aryl hydrocarbon receptor (AhR) 
complex. The receptor-inducer complex apparently 
binds to a translocating factor, which allows the complex 
to enter the nucleus. Once inside the nucleus, the complex 
attaches to specific sites on DNA, distorting the DNA 
chain and resulting in transcription of mRNA that codes 
for CYP450 1A. The mRNA subsequently translates 
into new CYP450 1A protein (Hahn et al., 1992)
 Organophosphate (OP) and carbamate (CB) 
insecticides, including chlorpyrifos and carbaryl, 
are primarily recognized by their anticholinesterase 
action. However, they are also metabolized by CYP450. 

Chlorpyrifos is activated to chlorpyrifos-oxon through 
a CYP450-catalyzed desulfuration reaction (Fukuto, 
1990), and Matsumusa (1975) demonstrated that 
carbaryl can be hydrolyzed by oxidized CYP450 to 
form both hydrolysis and hydroxylation products, 
respectively. 
 In this study, chlorpyrifos and carbaryl were found 
to increase CYP450 1A both on protein and gene levels. 
The induction was characterized by a dose-dependent 
increase of EROD activity, which is correlated well with 
CYP450 1A mRNA levels in liver. Induction of CYP450 
1A caused by exposure to organic compounds, by which 
chemicals stimulate the rate of gene transcription, 
results in increased levels of messenger RNA. The 
CYP450 protein is then synthesized and modified to 
give the catalytically active enzyme (Goksoyr and 
Forlin, 1992). The highest induction was found in 
fish exposed to 43 µM of chlorpyrifos and 119 µM of 
carbaryl both in EROD activity and CYP450 1A gene 
expression when compared to the control group. This 
result may be due to a rapid induction of CYP450 1A 
which can be detected within 24 h after exposure.  
 With chlorpyrifos, the effects on CYP450 occur 
similarly to that described by Eamkamon et al. (2005). 
They found in shrimps (Peneaus monodon), that 
exposure to a high concentration of chlorpyrifos (1000 
µg/L) resulted in significant elevation of CYP450 
gene expression in comparison to control. Induction 
of CYP450 1A in fish exposed to carbaryl has been 
studied by Ledirac et al. (1997), Denison et al. (1998), 
Delescluse et al. (2001), and Ferrari et al. (2007). 
 There are several hypotheses explained the 
inductions of CPY450 1A. For example, Danison et al. 
(1998) demonstrated that carbaryl can competitively 
bind to the AhR and that can activate AhR-dependent 
gene expression in cultured cells. They proposed 
that the compound mentioned above may in fact be 

Figure 2. Fold induction of CYP450 1A gene expression of hybrid catfish exposed to chlorpyrifos (A) and carbaryl (B) at 
different concentrations and time exposure (* = significantly different from control, P<0.05). The highest induction was 
found in fish exposed to 43 µM of chlorpyrifos and 119 µM of carbaryl when compared to the control group
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very weak ligands of AhR, but the demonstration of 
their ability to competitively bind to the receptor has 
been difficult, due to the extremely high AhR-binding 
affinity of strong inducers. Ledirac et al. (1997) stated 
that CYP450 1A is induced without binding to the AhR, 
but may act through another signaling pathway.
 In conclusion, organophosphate and carbamate 
insecticides are primarily recognized by their 
anticholinesterase action. However, they have been 
reported to affect detoxifying responses in various 
species, including fish (Delescluse et al., 2001). In this 
study, we demonstrated that these insecticides have 
genotoxic effects in hybrid catfish. An early increase 
of CYP450 1A mRNA levels may be an adaptative 
response to detoxify itself from insecticides. The 
responses observed in liver showed similar trends in both 
measurements, EROD activity and CYP450 1A gene 
expression, in hybrid catfish exposed to chlorpyrifos 
and to carbaryl. However, the CYP450 1A gene was 
found prominently expressed in fish exposed to these 
insecticides. Therefore, our studies suggest that CYP450 
1A gene expression could be used as an effective tool 
for biomonitoring of environmental contamination by 
chlorpyrifos and carbaryl insecticides. 
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