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Abstract

The objective of this study is to identify the most important air pollutants based on their 
individual contribution to Air Quality Index (AQI) and to determine the major air pollution 
sources in Bahrain.  Data sets from seventeen air quality monitoring sites were evaluated using 
XLSTAT 2014 and Statistical Package for the Social Sciences (SPSS 22) over six-and-half-year 
between July 2006 and December 2012. Hierarchical Agglomerative Cluster Analysis (HACA) 
categorized the monitoring sites into three distinctive clusters based on similarities of air 
pollutants characteristics and meteorological parameters.  Principal Component Analysis (PCA) 
identified major sources of air pollution in each cluster.  Results demonstrated that dust storms, 
industrial activities, vehicular emissions, airport activities, power plants and filling stations 
were major air polluters. PCA analysis showed that temperature and wind speed have positive 
loading while relative humidity has negative loading. Multiple Linear Regression (MLR) analysis 
was applied to develop models for prediction of AQI for every cluster based on concentrations 
of key air pollutants. Results showed PM10 and PM2.5 highly contributed to AQI values. MLR 
models exhibited good fit with adjusted R2 value of 0.865, 0.794 and 0.842 for Clusters 1, 2 and 
3 respectively.  Standardized coefficient values for PM10 succeeded by PM2.5 were the highest 
in each cluster.

Keywords: Air Quality Index; HACA; PCA; Multiple Linear Regression; Particulate matter.
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1. Introduction

 Air pollution provides insidious challenge  
to environment and public health. The long-term 
exposure to ambient air pollutants is associated 
with increased morbidity and mortality (Cohen 
et al., 2017).  

 Monitoring and modeling of ambient air 
quality are necessary steps to evaluate source 
apportionment subsequently implementing air 
quality management programs (WHO, 1999).  
The status of ambient air quality is reported to  
the public using indices that explain the associated  
health risks in a simple manner. The USEPA  
defined AQI in terms of six key air pollutants: 
CO, NO2, O3, PM10, PM2.5, and SO2 (EPA, 2009).    

 Bahrain is an archipelago of thirty-three 
natural islands and shoals located in West Asia.  
The kingdom is the most densely populated 
country in the region with a population density 
of 1,614 people per square kilometer (Bahrain  
Census, 2010). Its geographical location adjacent  
to arid and semi-arid areas of the Arabian 
Peninsula increased its exposure to dust storms 
(Tsiouri et al., 2015). However, there is limited 
published air quality studies in Bahrain and that 
could be attributed to weaknesses with respect  
to air pollution subjects covered as part of  
environmental engineering curriculum in higher 
education institutions (Jassim and Coskuner, 
2007). A recent analysis of ambient air quality  
showed an increase of particulate matter  
concentrations (Jassim et al., 2018). 

 World Health Organization global ambient 
air pollution database ranked Bahrain in the top 
ten most urban ambient air polluted countries 
in the world based on high particulate matter  
concentrations (WHO, 2016). Similarly, an  
assessment of ambient air quality identified  

PM10 and PM2.5 to be the most critical air  
pollutants with potential health implications 
based on calculated AQI values in Bahrain 
(Jassim and Coskuner, 2017). 

 Statistical analyses are utilized to  
complement large dataset generated by network 
of monitoring stations.  HACA, PCA, and MLR 
are widely applied multivariate analysis methods 
in environmental issues including air quality 
studies (Dominick et al. 2012; Özbay et al., 2011; 
Pavón-Domínguez et al., 2014). 

 The purpose of this study is to identify 
spatial patterns of air pollution within study 
area by grouping air quality monitoring sites 
into similarly characterized clusters. Dataset 
on air pollutants concentrations and values of 
meteorological parameters between 2006 and 
2012 were utilized. PCA was applied to identify 
the main sources of air pollution. MLR models 
were further developed to estimate contribution 
of key air pollutants to AQI values.

2. Materials and Methods  

2.1 Air quality monitoring stations

 The Supreme Council for Environment 
monitored seventeen sites utilizing five mobile 
ambient air quality stations between July 2006 
and December 2012. The spatial arrangements 
of these sites are presented in Table 1.  

2.2. Meteorological parameters 

 The meteorological measurement instru-
ments are located in Bahrain International 
Airport in Muharraq Island and the meteoro-
logical data was received from Meteorological 
Directorate.  
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2.3. Pre-processing data 

 Multivariate analysis methods were applied 
on 5070 data from July 2006 to December 2012. 
These included monthly mean concentrations 
of ten pollutants (NH3, NO2, H2S, SO2, CO,  
O3, PM10, PM2.5, C6H6, TNMHC) at five 
air quality monitoring stations and three  
meteorological parameters (ambient temperature, 
relative humidity and wind speed). 

 Approximately 8% of the data was not 
available from the complete data matrix. This 
percentage of missing data in a time-series 
multivariate application is acceptable because 
the imputation methodologies yield good results 
when the proportion of missing dataset is less 
than 10% (Junger and de Leon, 2015). 

 The multivariate analysis methods (HACA, 
PCA and MLR) require complete dataset  
(Kaiser, 2014). There are various imputation- 
based methodologies developed for treating  
missing data. Expectation-Maximization  
algorithm was utilized due to its simple  
implemantation using SPSS 22 (Donders et al., 
2006).  This algoritm is advantageous because it 
produces valid and unbiased estimates. 

2.4. Hierarchical Agglomerative Cluster  
 Analysis (HACA)

 This methodology hierarchically groups 
the air quality monitoring stations into clusters.  
The most similar monitoring stations are first 
grouped and these initial groups are merged 
according to their similarities. As the similarity 
decreases, all subgroups are combined into a 
single cluster (Johnson and Wichern, 2007). 

The classification of the clusters is illustrated in 
the form of a two-dimensional diagram known 
as a dendrogram (tree diagram), which shows 
similarity levels and illustrates the mergers that 
are made at successive levels. The vertical axis 
of the dendrogram represents the distance or 
dissimilarity between clusters and the horizontal 
axis represents the objects and clusters.

2.5. Principal Component Analysis (PCA)

 PCA is an exploratory statistical method 
that is utilized for the identification of major 
sources of air pollution because it transforms  
a set of interrelated variables into a set of  
uncorrelated variables (Abdul-Wahab et al.  
2005; Pires et al., 2008). It highlights the meaningful 
variables that explains variance in data and 
excludes the less significant variables. The 
numbers of transformed variables or Principal 
Components (PCs) are equal to the number of 
independent variables. The first PC represents 
the largest proportion of variability of data and 
the second PC has the largest proportion of 
variability that has not been presented in first 
component (Jolliffe, 2002).  The PCs generated 
by PCA are not readily available for interpre-
tation therefore it is necessary to rotate them 
using orthogonal rotation method (varimax).  
The varimax rotation obtains new groups of 
variables called Varimax Factors (VFs) and this 
feature assists in identifying different possible 
sources of air pollution. The selection of PCs 
depends on Kaiser Criterion for eigenvalues 
and it defines the statistically significant PCs as 
those with eigenvalues greater than or equal to 
one (Kaiser, 1960).   
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Table 1. Air quality monitoring sites in Bahrain. 

The color codes correspond to different clusters (Cluster 1 is pink, Cluster 2 is brown, Cluster 3 
is green)

Monitoring Site Station ID  
Hamala S1
Hamad Town S2
Bahrain Fort S3
Riffa S4
Jaww S5
Al-Areen S6
Ras Hayan S7
Manama S8
Nabeeh Saleh S9
Tubli S10
Hidd S11
Samaheej S12
Arad S13
Al-Busateen S14
Maameer S15
Sitra S16
Salmabad S17

Factor loadings indicate quantitatively the  
contribution of a variable to a particular PC and 
the similarity extent between variables.  If factor 
loading is greater than 0.75 then it is considered 
“strong loading”. If factor loading is between 
0.75 to 0.50 then it is considered “moderate 
loading” and if it is between 0.49 to 0.30 then 
it is considered “weak loading” (Jolliffe, 2002).  

2.6. Multiple Linear Regression (MLR)

 MLR is a statistical method that allows 
prediction of variability between a dependent 
variable and independent variables (Jobson,  
1991). This method is widely applied in atmospheric  
modelling for investigating statistical relationship  
between a dependent variable and several  

independent variables by fitting a linear equation  
to actual data and provides contribution percentage 
of each parameter to atmospheric pollution 
(Pai et al., 2009). The performance indicators  
were utilized to evaluate goodness of fit for  
developed MLR. These indicators are coefficient 
of determination (R2), adjusted coefficient of 
determination (R2

adj), and Root Mean Square 
Error (RMSE).

3. Results and discussion

3.1 HACA results

 This algorithm was utilized to study spatial 
variation of seventeen air quality-monitoring 
sites.  It was performed on monthly mean values 
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for ten air pollutants concentrations and three 
meteorological parameters as described earlier.   
Figure 1 shows a dendrogram grouping the air 
quality monitoring sites across Bahrain into 
three distinguishable clusters.

 Cluster 1 includes Riffa (S4), Maameer 
(S15), and Salmabad (S17). These stations are  
exposed to air pollutants from various industrial  
activities. Maameer village is located in proximity 
of intensive industrial area including petroleum  

refinery, petrochemical plants, asphalts, ready-mix 
concrete, and other aluminum workshops.  
Salmabad is a small-scale industrial area for car 
garages, warehouses, and aluminum factories.   
Riffa is in proximity of power plant, petroleum 
refinery, and aluminum smelter. 

 Cluster 2 accommodates Hamad Town 
(S2), Bahrain Fort (S3), Jaw (S5), Al-Areen (S6), 
Ras Hayan (S7), Tubli (S10), Arad (S13) and 
Sitra (S16).

Figure 1. A dendrogram showing three clusters of air quality monitoring sites

M.S. Jassim et al. / EnvironmentAsia 11(2) (2018) 9-22
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These stations are mainly exposed to pollutants 
from congested highways. Hamad Town is 
situated adjacent to Shaikh Khalifa bin Salman 
highway.  Tubli is situated near to Shaikh Isa bin 
Salman highway and close proximity to a major 
sewage treatment plant.  Sitra is situated near to 
Shaikh Jaber Al Subah highway. Arad is near to 
Khalifa Al Kabir Highway and near to airport. 
Ras Hayan is near to Hawar highway and Jaw 
is near to King Hamad highway. 

 Hamala (S1), Manama (S8), Nabih Saleh 
(S9), Hidd (S11), Samaheej (S12) and Busateen 
(S14) are included in Cluster 3. These stations 
are very close to seashores with Hidd, Samaheej 
and Busateen located in Muharraq Island. 

3.2 PCA Results

 PCA was performed on concentrations of 
ten air pollutants and the three meteorological  
parameters. Analysis was implemented to  
reduce the number of parameters and to identify 
the major sources of variations in each cluster. 
Results of PCA loadings after varimax rotation 
are presented in Table 2. Only strong factor 
loadings (higher than 0.75) are considered as a 
source of variation. Table 2 also presents eigen-
values, variability (%) and cumulative variability 
(%) for each cluster. 

a) Cluster 1

 PCA revealed six factors that explain 
78.33% of total variance in Cluster 1. First and 
second factors (F1 and F2) account for 23.46% 
and 13.72% of total variance respectively.  

 F1 has strong positive loading on PM10 

(0.87) and PM2.5 (0.88) but strong negative 
loading on humidity (-0.88). F2 has strong 
positive loading on wind speed (0.89). These 

reflect the contribution of Aeolian processes in 
which sandstorms across the Arabian Peninsula 
transport coarse particulate matter to Bahrain.  

 F3 contributes 12.83% of total variance 
and has strong positive loading on NH3 (0.82) 
and strong negative loading on SO2 (-0.76).  
Ammonia emissions are from animal manure  
and production of nitrogen containing fertilizers 
due to proximity of Maameer (S15) to main  
slaughterhouse, feedlot of main livestock  
company and petrochemical industries (Sutton 
et al., 2000).  

 Major source of SO2 from anthropogenic 
sources are combustions of fuel that contain 
traces of sulfur in oil refinery at Maameer (S15) 
and the gas-fired electric power generation at 
Riffa (S4) (Mukhopadhyay and Forssell, 2005).  
These industries are responsible for the  
heterogeneous discharge of SO2, NH3 and PM2.5 
(Jaramillo and Muller, 2016).  It is believed that 
PM2.5 is originating from chimneys of industrial 
facilities in proximity to air monitoring sites 
within Cluster 1. 

 F4 explains 11.58% of total variance which 
has strong negative loading on O3 (-0.81) but 
strong positive loading on C6H6 (0.78).  Ozone is 
a secondary pollutant that is produced from the 
reaction of NOx and TNMHC under the action  
of sunlight. Sources of these anthropogenic  
precursors are industrial and vehicular emissions 
(Abdul-Wahab et al. 2005). Main sources of 
C6H6 worldwide are gasoline and diesel vehicles 
(Karakitsios et al., 2006). Traffic in Cluster 1 is 
congested because it is highly residential. 

 F5 explains 8.65% of total variance that has 
strong positive loading on H2S (0.75). Hydrogen 
sulfide is an industrial pollutant associated with 
natural gas processing and refining operations 
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(Lu and Schaefer, 2004). F6 contributes 8.08% 
of total variance and has strong positive loading 
on CO (0.90). Carbon monoxide is released 
from anthropogenic activities like incomplete 
combustions of fuel to produce electric power 
and vehicle emissions (Levy, 2015). 

b) Cluster 2

 Cluster 2 has five factors that explain 
77.24% of total variance. F1, F2, F3, F4, and 
F5 explain 32.29%, 13.58%, 13.58%, 9.74%, 
and 8.05% of total variance respectively. F1 has 
strong positive loading on ambient temperature 
(0.84) but strong negative loading on humidity 
(-0.84).  Growth of real estate sector and higher 
groundwater salinity resulted in the decline 
of agricultural activities and disappearance of  
green areas. These contributed to higher  
atmospheric air temperature with increase 
of air-conditioned high-rise buildings, sharp  
population growth and intensive energy  
consumption from fossil energy resources.  

 F2 has strong positive loading on NO2 

(0.77). A major source of NO2 is fuel combustion 
from motorized traffic and industry (Ghazali 
et al., 2009). Monitoring sites in this cluster are 
in proximity of congested residential areas and 
highways.  

 F4 has strong loading on PM10 (0.75) and 
F5 has strong positive loading on wind speed  
(0.86). These parameters were previously  
discussed in Cluster 1.

c) Cluster 3

 Cluster 3 has six factors that explain 
70.83% of total variance.  F1, F2, F3, F4, F5 and 

F6 explain 20.45%, 14.03%, 11.23%, 9.0%, 8.30, 
and 7.82% of the total variance respectively.  F1 
has strong positive loading on PM10 (0.87) and 
F2 has strong positive loading on wind speed 
(0.88).  Presence of PM10 and wind speed in 
this cluster confirm the importance of PM10 

over the islands and the transportation of coarse 
particulate matter from nearby arid region.

 F3 has strong positive loading on NO2 

(0.76) but strong negative loading on TNMHC  
(-0.75). Both are primary anthropogenic precursors 
in the presence of sun light to form ozone.  
Sources of these two pollutants are industrial 
and vehicular emissions (Abdul-Wahab et al., 
2005). F5 has a strong positive loading on NH3 

(0.88). Ammonia could be produced from 
human and animal waste. There is a large-scale 
poultry farm in the area of Hamala (S1).  Animal 
traders are having barns near to Samaheej (S12). 

 F6 has a strong positive loading on H2S 
(0.77) and on C6H6 (0.76).  H2S is associated 
with processes that utilize natural gas (Lu and  
Schaefer 2004). Major sources of C6H6 are filling  
stations, exhaust from motor vehicles and in 
dustrial emissions. Cluster 3 includes some of 
the most densely populated areas in Bahrain. S8 
is part of Capital Governorate while S11, S12, 
S13 and S16 are part of Muharraq Governorate.  
The population density of Capital is 8671  
people/km2 and it is 3377 people/km2 in 
Muharraq (Bahrain Census, 2010).  Most of 
filling stations (Al Fateh, Al Mahooz, Saar) and 
automobile service stations (Salmabad, Toyota 
Plaza, Jawad Service Center) are located within 
Cluster 3 due to high population densities and 
heavy traffic.

M.S. Jassim et al. / EnvironmentAsia 11(2) (2018) 9-22
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3.3 MLR Results

 MLR is applied to predict the AQI for 
each cluster.  The AQI is regressed against con-
centrations of five key air pollutants: SO2, CO, 
O3, PM10 and PM2.5.  However, NO2 was not 
included in the analysis due to its low measured 
concentrations.  

 Regression coefficients explain the influence 
of each air pollutant parameter and ascertain 
its contribution. Developed AQI correlations 
along with regression coefficient of determi-
nation (R2), adjusted regression coefficient of 
determination (R2

adj) and Root Mean Square 
Error (RMSE) are shown in Equations 3, 4, and 
5 respectively.

Cluster 1

AQI 

= 22.06-0.08(SO2)

-8.70(CO)-0.18(O3)

+0.53(PM10)+0.55(PM2.5)                               (3)

R2 = 0.873

R2
adj = 0.865

RMSE = 26.712

Cluster 2

AQI 

= 38.00+1.31(SO2)

-1.28(CO)-0.46(O3)+0.46(PM10)

+0.53(PM2.5)                                          (4)

R2 = 0.801
R2

adj = 0.794

RMSE = 62.216

Cluster 3

AQI 

= -10.42+0.43(SO2)+4.35(CO)

+0.83(O3)+0.35(PM10)

+0.91(PM2.5)                                                      (5)

R2 = 0.847

R2
adj = 0.842

RMSE = 28.238

 Performance indicators show that better 
model prediction is realized with close to unity 
for R2 and R2

adj and with lower RMSE value.  
For the three clusters, p-value of developed 
correlations was less than 0.05 indicating it is 
statistically significant.  

 Equation 3 shows that Cluster 1 has the 
highest R2 with 0.873, R2

adj with 0.865, and the 
lowest RMSE with 26.712. The five air pollutants 
in Cluster 1 contribute 86.5% to AQI. Average 
concentrations of SO2, CO, and O3 have negative  
influence on the AQI while average concentrations 
of PM10 and PM2.5 have positive influence on 
AQI. Cluster 3 has the second highest R2 with 
0.847 and R2

adj with 0.842.  

 Total contribution of the five air pollutants 
to AQI is 84.2%.  The pollutants SO2, CO, O3, 
PM10 and PM2.5 have positive influence on AQI.  
The lowest R2 was observed in Cluster 2 with a 
value of 0.794. Average concentrations of CO 
and O3 have negative influence on AQI while 
SO2, PM10 and PM2.5 have positive influence. 
Table 3 summarizes contribution of five air 
pollutants to AQI in each cluster.

M.S. Jassim et al. / EnvironmentAsia 11(2) (2018) 9-22



18

 Table 3 shows that AQI values is predom-
inately influenced by PM10 and PM2.5 within 
each cluster using performance indicators.  High 
R2 and low RMSE values statistically show that 
PM10 and PM2.5 are the most influential on AQI.  
It shows that the effects of O3, CO and SO2 on 
AQI values are insignificant.  

 The relationships between air pollutants 
(PM10, PM2.5, CO, O3, SO2) and AQI values in 
Cluster 1 are illustrated as scatter plots in Figure 
2.  Results of R2 with 95.4% for PM10 and 48.8%  
for PM2.5 demonstrate that AQI values are 
predominately influenced by particulate matter. 

Table 3. The contribution of five air pollutants to AQI values

Variables R2 R2
adj Standard Error RMSE

AQI – PM10 0.859 0.858 0.0270 27.440
AQI – PM2.5 0.585 0.580 0.243 47.138

Cluster 1 AQI – O3 0.019 0.008 0.636 72.454
AQI – CO 0.013 0.002 17.034 72.672
AQI – SO2 0.020 0.008 1.416 72.440
AQI – PM10 0.764 0.762 0.0237 66.824
AQI – PM2.5 0.227 0.221 0.206 120.868

Cluster 2 AQI – O3 0.000 -0.007 0.872 137.441
AQI – CO 0.006 -0.002 21.590 137.063
AQI – SO2 0.000 -0.007 1.839 137.446
AQI – PM10 0.676 0.675 0.0270 40.441
AQI – PM2.5 0.599 0.596 0.0994 45.120

Cluster 3 AQI – O3 0.012 0.006 0.370 70.792
AQI – CO 0.001 -0.006 21.674 71.199
AQI – SO2 0.000 -0.006 1.229 71.224
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Figure 2. Relationships between air pollutants and AQI values in Cluster 1

 Parity plots are useful tools to analyze 
overall accuracy for developed correlations. 
Figure 3 shows a comparison between observed 
(actual) and predicted (correlated) AQI values 
for Clusters 1-3. Coefficient of determination 

(R2) for regression lines within Clusters 1, 2, and 
3 are 96.4%, 96.2% and 92.1% respectively.  The 
95% confidence interval (CI) and 95% prediction 
interval (PI) bands show good agreement 
between observed and predicted AQI values.   
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Figure 3. Parity plots of observed versus predicted AQI values for clusters

 ∆ Cluster 1

 ∆ Cluster 3

 ∆ Cluster 2

 ∆ Cluster 1  ∆ Cluster 2  ∆ Cluster 3

Figure 4. Bar charts of standardized coefficients for air pollutants
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 Standardized coefficient values were 
utilized to compare the relative influence of air 
pollutants on the AQI values and to explain 
strength of association. The most important 

variable has the highest absolute value of the 
standardized coefficient. Figure 4 shows that 
PM10 has the highest standardized coefficient 
value followed by PM2.5 in all clusters. 
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4. Conclusions

 Multivariate analysis methods were utilized  
to evaluate spatial distribution and source  
apportionment of air pollution in Bahrain. 
HACA spatially categorized seventeen air 
quality-monitoring sites into three distinctive 
clusters.  

 Results of PCA analysis determined major 
sources of air pollutants for each cluster.  High  
positive loadings for PM10 and PM2.5 in Cluster 1  
suggest that major sources of air pollution are  
regional sandstorms and heterogeneous emissions 
released from extensive industrial activities. 
Vehicular emissions and combustion of fuel 
were major sources of air pollution in Cluster 2.  

 Industrial activities, man-made islands, 
vehicular emissions from heavy traffic, filling  
stations and automobile service stations,  
international airport activities, power and  
desalination plants are considered major sources 
of air pollution in Cluster 3. It is concluded that  
PM10 is the most significant source of air  
pollution throughout Bahrain. MLR analysis  
demonstrated that PM10 is the highest  
contributor to AQI values followed by PM2.5 
for all clusters. 
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