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Abstract

 The phosphorus (P) sorption capacity was determined for concrete waste, alum residuals from water treatment sludge, 
and natural sorbents (shells, clay, kaolin, and mordenite) from various parts of Thailand. The material showing the best P 
sorption capacity (shells) was selected for preparing a ceramic material to support the growth of nitrifying bacteria. The 
ceramic material, consisting of shells (50% by weight), alum residuals sludge (40% by weight) and a soil (10% by weight) 
heat at 750°C for about one hour, was studied for its P sorption capacity. Langmuir and Freundlich sorption isotherms yielded 
similar relative maximum P sorption capacities for the sorbents. The results from the Langmuir calculations showed the 
following maximum P sorption capacities: 32.26 g P/Kg shells, 31.25 g P/Kg concrete waste, 7.19 g P/Kg alum residuals 
sludge, 290 mg P/Kg clay, 80 mg P/Kg kaolin, and 30 mg P/Kg mordenite.    The P sorption capacity for the prepared ceramic 
material at grain size 12 mm was 4.85 g P/kg. This result suggests that the ceramic material could be used for P sorption 
while providing growth support for nitrifying bacteria, similar to the well documented a popular P sorption material: light 
expanded clay aggregate (LECA) from Sweden.

Keywords: phosphorus sorption; concrete waste; shells; alum residuals from water treatment sludge; clay; kaolin; mordenite; 
ceramic material

1. Introduction

 Although phosphorus (P) is an essential nutrient 
for normal functioning of ecosystems, excess P as 
well as nitrogen (N) can stimulate eutrophication of 
freshwater lakes may contribute to the reduction of 
dissolved oxygen (DO), and can cause ecosystem 
perturbation in coastal zones. Furthermore, some N 
forms, e.g. nitrate (NO3

-) is a potential public health 
hazard in drinking water because it increases the risks 
of methemoglobinemia (blue baby syndrome) in infants 
(Johnson and Kross, 1990). Nitrite (NO2

-) is also affect 
to aquatic life. For these reasons, to prevent harmful 
effects on human health and aquatic life, P and N must 
often be removed from wastewaters before discharge 
into the environment.
 In Thailand, as in many locations worldwide, 
domestic wastewater is commonly treated in 
conventional septic tanks, as opposed to central 
treatment plants. These small scale units alone cannot 
remove P and N to satisfactory levels. Theoretically, 
individual and onsite treatment systems (e.g. septic  
tank) are able to remove some organic matters 
(biochemical oxygen demand, BOD), P, and N by about 
40-50%, 10-20%, and 10-15%, respectively (Crites and 

Tchobanoglous, 1998; U.S. EAP, 2002). Under some 
conditions both P and N pollutants in septic tank effluent 
(STE) can be discharged directly to the groundwater 
or freshwater. But often STE should be further treated 
prior to release.
 Highly efficiency treatment systems have been 
developed but these are expensive to build and 
difficult to operate. Generally, removal of both P and 
N from wastewater by using only biological treatment 
is not simply and highly efficient because bacteria 
cannot change P into a gas phase as they can with 
N. An inexpensive and simple approach to remove 
P from STE with secondary treatment is by sorption 
and precipitation. Also, it would be quite beneficial to 
find an efficient P sorbent that would provide growth 
medium for N removing bacteria. Such an application 
to domestic sewage from STE is proposed by Katers 
and Zanoni (1998).
 There are many P sorption studies in the literature  
including the following: Vohla et al. (2011) and 
Westholm (2006) determined the P sorption capacities 
for many materials. Johnsson (1997) reported that 
lightweight aggregates or light expanded clay aggregate 
(LECA) from Sweden had P sorption capacity of 12 g P/
Kg for grain size 4 mm and 4.8 g P/Kg for grain size 10 
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Abstract

The aim of the present study was to standardize and to assess the predictive value of the cytogenetic analysis
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to 1 MNcell/1000 cells in control animals). The study revealed that micronucleus test, as an index of cumulative
exposure, appears to be a sensitive model to evaluate genotoxic compounds in fish under controlled conditions.
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1. Introduction

In India, about 200 tons of mercury and its
compounds are introduced into the environment
annually as effluents from industries (Saffi, 1981).
Mercuric chloride has been used in agriculture as a
fungicide, in medicine as a topical antiseptic and
disinfectant, and in chemistry as an intermediate in
the production of other mercury compounds. The
contamination of aquatic ecosystems by heavy
metals and pesticides has gained increasing attention
in recent decades. Chronic exposure to and
accumulation of these chemicals in aquatic biota
can result in tissue burdens that produce adverse
effects not only in the directly exposed organisms,
but also in human beings.

Fish provides a suitable model for monitoring
aquatic genotoxicity and wastewater quality
because of its ability to metabolize xenobiotics and
accumulated pollutants. A micronucleus assay has
been used successfully in several species (De Flora,
et al., 1993, Al-Sabti and Metcalfe, 1995). The
micronucleus (MN) test has been developed
together with DNA-unwinding assays as
perspective methods for mass monitoring of
clastogenicity and genotoxicity in fish and mussels
(Dailianis et al., 2003).

The MN tests have been successfully used as
a measure of genotoxic stress in fish, under both

laboratory and field conditions. In 2006 Soumendra
et al., made an attempt to detect genetic biomarkers
in two fish species, Labeo bata and Oreochromis
mossambica, by MN and binucleate (BN)
erythrocytes in the gill and kidney erythrocytes
exposed to thermal power plant discharge at
Titagarh Thermal Power Plant, Kolkata, India.

The present study was conducted to determine
the acute genotoxicity of the heavy metal compound
HgCl2 in static systems. Mercuric chloride is toxic,
solvable in water hence it can penetrate the aquatic
animals. Mutagenic studies with native fish species
represent an important effort in determining the
potential effects of toxic agents. This study was
carried out to evaluate the use of the micronucleus
test (MN) for the estimation of aquatic pollution
using marine edible fish under lab conditions.

2. Materials and methods

2.1. Sample Collection

The fish species selected for the present study
was collected from Pudhumadam coast of Gulf of
Mannar, Southeast Coast of India. Therapon
jarbua belongs to the order Perciformes of the
family Theraponidae. The fish species, Therapon
jarbua (6-6.3 cm in length and 4-4.25 g in weight)
was selected for the detection of genotoxic effect

Available online at www.tshe.org/EA
EnvironmentAsia 6(1) (2013) 60-65



61

mm. Zhu et al. (1997) reported that Utelite from Utah, 
USA could adsorb P at 3.46 g P/Kg and also be used 
as a growth medium for nitrogen removing nitrifying 
bacteria. Sakadevan and Bavor (1998) showed that a 
blast furnace slag from Australian Steel Mills Limited 
and the clinoptilolite material (Zeolite) could adsorb P 
at 44.2 g P/Kg and 2.15 g P/Kg, respectively.
 In this investigation, sorbents from urban and 
rural area in Thailand were considered by following 
three main factors: availability, low cost, and source 
(preference for waste material of bypass product from 
some process). Thus, the following sorbents were 
selected for determination of P sorption capacity: 
concrete waste, alum residuals from water supply 
sludge, and natural sorbents (shells, clay, kaolin, and 
mordenite). Next, the sorbent having the highest P 
sorption capacity (shells) was blended with alum 
residuals from water treatment sludge and a soil heat 
at 750°C for about one hour. The resulting ceramic 
material was evaluated for its ability to adsorb P while 
supporting N removing nitrifying bacteria. For both 
criteria the ceramic material is comparable to light 
expended clay aggregate (LECA). The ceramic material  
from this work could be used in small or onsite 
wastewater treatment systems to improve P and N 
removal. This supporting growth media might be used in 
a unit operation of other wastewater treatment systems 
to enhance nutrients removal (tertiary treatment).

1.1. Sorbents

 Concrete waste
 Concrete is used for the construction of a large 
number and variety of structures worldwide because 
concrete is so stable, its disposal is often difficult. 
The most common methods for disposal include open 
dumping, landfill, and recycling. The composition of 
concrete waste is Ca (21.9%), Si (8.27%), Al (4.58%), 
O (53.51%), and C (11.74%). Concrete waste could be 
a good P sorption material because of high calcium. Its 
use in water treatment could reduce the environmental 
impact of concrete waste, making it much more eco-
friendly.

 Shells
 In Thailand shells are waste from seafood industry 
and are plentiful along the coasts in the southern 
part of Thailand. In general, this material consists of 
high concentrations of Ca and Mg carbonates. The 
composition of shells in this study was Ca (27.66%), 
Al (6.41%), O (52.51%), and C (13.42%). Shells are 
another good source to use as a P sorption because of 
high Ca carbonate.

 Natural sorbents
 Natural sorbents, in this work (clay, kaolin, and 
mordenite) are found in various parts of Thailand. In 
general, the major components of these materials are Al, 
Fe or Ca. Although information about natural sorbents 
in some area or country is available, more research is 
needed to quantify the compositions of natural sorbents 
which could vary with location. Furthermore, the 
mechanism for P removal with natural sorbents is not 
well understood.

 Alum Residuals from Water Supply Sludge
 Alum residuals from water supply sludge are 
a waste that is generated during the flocculation/ 
coagulation and sedimentation processes in a drinking 
water treatment plant. Alum residuals in this work 
were collected from the largest water supply treatment 
plant in Bangkok, Thailand. The compositions of alum 
residuals from water supply sludge at this plant are Al 
(17.02% by weight), Si (25.57% by weight), K (1.48% 
by weight), and Fe (7.43% by weight).

1.2. Langmuir and Freundlich Isotherm

 The Langmuir isotherm based on equilibrium 
between sorption and de-sorption of phosphorus 
molecules is written

(1)

where             is P adsorbed per unit weight of  

sorbents, Ce is equilibrium solution concentration, K1 
is designated as the Langmuir sorption maximum, and 
b is related to binding energy. The Langmuir sorption 
maximum is calculated from the slope and intercept  

obtained by plotting Ce as x-axis against as        0 
y-axis.
 The Freundlich isotherm is expressed as:

(2)

where K and n are constants. The constant K is 
considered a hypothetical index of P absorbed from 
a solution having a unit equilibrium P concentration. 
This K could be used to relate P sorption capacity of 
the material.

2. Materials and Methods

2.1. Experimental Approach

 In the initial work all sorbents: concrete waste, 
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alum residuals from water treatment sludge, and 
natural sorbents (shells, clay, kaolin, and mordenite) 
were used at 0.05 mm grain size. Later, the mixture 
synthetic or called as the ceramic material (shells, 
50% by weight, alum residuals from water treatment 
sludge, 40% by weight, a soil, 10% by weight and 
heat at 750°C for about one hour) was studied at 12 
mm grain size (optimum size for support of nitrifying 
bacteria). A maximum of one gram of each sorbent was 
equilibrated in a 100 ml glass flask with 30 ml of 0.01 
KCl solution containing various amounts of K2HPO4 
ranging from 0 to 100 mg P/L. Flasks were shaken in 
a standard shaker (100 rpm) for 48 hours at normal 
room temperature (25ºC). The decrease in P from the 
aqueous solution was assumed to have been adsorbed 
by sorbents. Phosphate adsorbed per unit weight (dry 
weight) of all sorbents was used to fit Langmuir and 
Freundlich sorption isotherm equations.
 To evaluate the efficacy of the synthetic ceramic 
material for P sorption and nitrifying bacterial growth 
support, a trickling filter apparatus was assembled using 
a cylinder 2.4 cm dimensions and 18 cm height. The 
synthetic ceramic material was added to a depth of 15 
cm. Air was allowed to flow through from top to bottom 
of the cylinder. An enriched, mixed nitrifying culture 
from the activated sludge of a municipal centralized 
wastewater treatment plants in Bangkok, Thailand was 
used to inoculate the material. The liquid feed was a 
synthetic solution prepared with tap water, ammonium 
sulfate (30-45 mg N/L), bicarbonate (200-250 mg/L 
as CaCO3) and nutrients. The pH of feed solution was 
varied from 8.4 to 8.5. A Chron-Trol programmable 
controller was used to control the pump feeding the 
synthetic solution to the trickling filter (every 3 minute). 

2.2. Orthophosphate Measurement

 Aqueous orthophosphate P content remaining in 

solution was measured by colorimetric methods as 
described by Andrew (1995) in Standard Methods 
for the Examination of Water and Wastewater (1998). 
About 25-30% of samples were randomly selected 
and analyzed by ion chromatograph (761 Compact Ion 
Chromatograph, IC, Methrom, Herisau, Switzerland). 
The results from the IC analysis were compared with 
the results from the colorimetric method. Results 
were not significantly different, demonstrating the 
appropriateness of the colorimetric method used 
throughout this work.

2.3. Surface Area and Chemical Characteristics of 
Sorption Materials

 Surface area of concrete waste, shells, and alum 
residuals from water treatment sludge was analyzed by 
Brunauer Emmett Teller (BET), Quantachrome Model 
Autosorb-1 (single-point and multi-point). The chemical 
characteristics of concrete waste, shells, and alum 
residuals from water treatment sludge were analyze 
by Energy Disperive X-ray Spectrometer, Jeol Model 
JSM-6340F.

3. Results and Discussion

 P sorption data from all sorbents were used to fit 
both Langmuir and Freundlich sorption isotherms, as 
shown in Table 1.
 The chemical characteristics and surface area of 
all sorption materials: shells, concrete waste, and alum 
residuals sludge are shown in Table 2.
 As shown in Table 1, the relative P sorption maxima 
for the sorbents tested are the same using Langmuir or 
Freundlich isotherm calculations. Because the Langmuir 
results provided higher least square fit values (R2), they 
were used to determine maximum P sorption capacities. 
The concentration of P in the equilibrium solution was 

Table 1. Coefficients of Langmuir and Freundlich isotherms for concrete waste, alum residuals from water treatment sludge 
and all natural materials: shells, clay, kaolin, and mordenite

Langmuir isotherm Freundlich isotherm

Material R2 Sorption-
maximum
(g P/Kg)

Binding 
energy
(L/g)

R2 Hypothetical
index of P sorb

(g P/Kg)

n

Shells 0.99 32.26 0.517 0.97 18.15 7.14

Concrete waste 0.90 31.25 0.136 0.61 14.32 6.67

Alum residuals from
water treatment sludge

0.80 7.19 0.023 0.72 0.418 1.77

Clay 0.99 0.29 21.82 0.98 0.031 1.79

Kaolin 0.99 0.08 9.2 0.98 0.016 2.29

Mordenite 0.82 0.03 4.8 0.82 0.008 2.52
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related to P sorption of shells, concrete waste, and alum 
residuals from water sludge by using Langmuir equation 
shown in Fig. 1. Shells showed the highest P sorption 
capacity at 32.26 g P/Kg shells. Previously Roseth 
(2000) reported the maximum P sorption capacity of 
shell sand at 14-17 g P/Kg, lower than the value found 
in the current study. The difference could be attributed to 
Roseth’s using a mixture of shells, snails and coral alga. 
This study used only shells. Typical shells chemical 
characteristics from this study are Ca (27.66%), Al 
(6.41%), O (52.51%), and C (13.42%) and surface 
area by BET is 2.846 m2/g. Roseth’s work reported the 
composition, only carbonatic material. The P sorption 
capacities of concrete waste and alum residuals from 
water supply sludge were 31.25 g P/Kg and 7.19 g P/
Kg, respectively. Although in the literature review there 
were many experiments which used concrete waste to 
remove P, the reports of P sorption capacity were not 
available. This study firstly reported the P sorption 
capacity and analysis of the composition of concrete 
waste. The chemical characteristics of concrete waste 
are Ca (21.9%), Si (8.27%), Al (4.58%), O (53.51%), 
and C (11.74%). A high Ca carbonate is mainly 

composition of concrete waste. The binding energy of 
concrete waste is lower than the binding energy from 
shells. Blinding energy is another important parameter 
in P sorption. For these reasons, shells were used to be 
a main of mixture in ceramic material.
 The P sorption of alum residuals from this work was 
comparison with literature review. Martula and Gagnon 
(2007) reported that the Langmuir isotherm in P sorption 
capacity on alum residuals in their work was 7.11 g P/
Kg. The chemical characteristics of alum residuals from 
water treatment sludge in this study are Al (17.02% by 
weight), Si (25.57% by weight), K (1.48% by weight), 
and Fe (7.43% by weight). The surface area of alum 
residuals from water treatment sludge by BET is 52.54 
m2/g. There is a high surface area comparison with other 
material. The occurrence of Al and Fe compositions 
in alum residuals from water treatment sludge could 
be significantly increased P removal in both sorption 
and precipitation processes. For these reasons, alum 
residuals from water treatment sludge were used to be 
a one of mixture in ceramic material.
  The concentration of P in the equilibrium solution 
was related to P sorption of clay, kaolin, and mordenite 

Table 2. Chemical Characteristics and Surface Area of Shells, Concrete Waste, and Alum Residuals Sludge

Material
Element (weight %)

BET (m2/g)
C Al Si Ca K Fe O

Shells 13.42 6.41 - 27.66 - - 52.51 2.846

Concrete waste 11.74 4.58 8.27 21.90 - - 53.51 2.828

Alum residuals sludge - 17.02 25.57 1.48 1.25 7.43 47.25 52.54

Figure 1. Phosphorus sorption vs. equilibrium solution P for shells, concrete waste, and alum residuals from water treatment 
sludge by using Langmiur equationFigu
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by using Langmuir equation shown in Fig. 2. Clay, 
kaolin, and mordenite had slightly to lower capacities 
of 290 mg P/Kg clay, 80 mg P/Kg Kaolin, and 30 mg 
P/Kg Mordenite, respectively. However, P sorption 
capacity of clay was significantly higher than P sorption 
capacity of sand 50 times. Aulenbach and Meisheng 
(1988) reported that P sorption capacity of sand 5.6 mg 
P/Kg.
 Although ground shells provide very high P 
sorption capacity, they cannot be applied directly in 
the field because of the very fine grain size (0.3 mm). 

Nitrifying bacteria would not be expected to grow 
well on this material because of the limited oxygen 
concentration. A simple method for increasing grain 
size was to blend ground shells (50% by weight), alum 
residuals from water supply sludge (40% by weight) 
with a soil (10% by weight) and heat at 750°C for 
about one hour. This mixture was called as the ceramic 
material. The resulting of ceramic material had a 
grain size 10-12 mm, pervious shown to promote the 
growth of nitrifying biofilms. Over a period of several 
weeks, it was demonstrated that nitrifying bacteria 

Figure 2. Phosphorus sorption vs. equilibrium solution P for clay, kaolin, and mordenite by using Langmiur equation
Figure 2. Phosphorus sorption vs. equilibrium solution P for clay, kaolin, and mordenite by using Langmiur 
equation 

 Although ground shells provide very high P sorption capacity, they cannot be applied 
directly in the field because of the very fine grain size (0.3 mm). Nitrifying bacteria would not be 
expected to grow well on this material because of the limited oxygen concentration. A simple 
method for increasing grain size was to blend ground shells (50% by weight), alum residuals from 
water supply sludge (40% by weight) with a soil (10% by weight) and heat at 750°C for about 
one hour. This mixture was called as the ceramic material. The resulting of ceramic material had 
a grain size 10-12 mm, pervious shown to promote the growth of nitrifying biofilms. Over a 
period of several weeks, it was demonstrated that nitrifying bacteria associated with the synthetic 
blend or ceramic material significantly oxidized ammonium (NH4

+) to nitrate (NO3
-) as show in 

Fig. 3. 
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associated with the synthetic blend or ceramic material 
significantly oxidized ammonium (NH4

+) to nitrate 
(NO3

-) as show in Fig. 3.
 The ceramic material was also tested for P sorption 
capacity by the Langmuir equation. The maximum P 
sorption of this ceramic material was 4.85 g P/Kg. In  
previous research by Johansson (1997) and Oovel 
et al. (2007), it was shown that nitrifying bacteria were 
supported by coarse media (grain size 10 mm) such 
as light expanded clay aggregate (LECA). The coarse 
media had significant water permeability and good 
P sorption (4.8 g P/Kg LECA). The ceramic sorbent  
material prepared in this work had a comparable 
P sorption capacity (4.85 g P/Kg ceramic sorbent 
material). Moreover, this ceramic material could be 
used as a material for nitrifying bacteria for removal 
N. It is suggested that this ceramic material could be 
used within individual wastewater treatment systems, 
such as a medium in trickling filter, infiltration trench, 
and constructed wetlands.

4. Conclusion

 Shells provided the highest P sorption capacity 
as compared with all other tested sorbents. P sorption 
capacities for clay, kaolin, and mordenite are quite low. 
A ceramic material with a larger grain size (12 mm) was 
prepared with ground shells, alum residuals from water 
treatment sludge, and a soil. The ceramic material could 
be use in wastewater treatment as a biomass growth 
support for nitrifying bacterial well, while providing P 
sorption capacity of 4.85 g P/Kg. The synthetic mixture 
or ceramic material compares favorably with LECA 
from Sweden with respect to both P sorption capacity 
and a nitrifying bacteria growth support. The ceramic 
material from this study could be used in the tertiary 
treatment in onsite wastewater treatment.
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